Leucine-rich repeat kinase 2 binds to neuronal vesicles through protein interactions mediated by its C-terminal WD40 domain.

نویسندگان

  • Giovanni Piccoli
  • Franco Onofri
  • Maria Daniela Cirnaru
  • Christoph J O Kaiser
  • Pravinkumar Jagtap
  • Andreas Kastenmüller
  • Francesca Pischedda
  • Antonella Marte
  • Felix von Zweydorf
  • Andreas Vogt
  • Florian Giesert
  • Lifeng Pan
  • Flavia Antonucci
  • Christina Kiel
  • Mingjie Zhang
  • Sevil Weinkauf
  • Michael Sattler
  • Carlo Sala
  • Michela Matteoli
  • Marius Ueffing
  • Christian Johannes Gloeckner
چکیده

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial and sporadic Parkinson's disease (PD). LRRK2 is a complex protein that consists of multiple domains, including predicted C-terminal WD40 repeats. In this study, we analyzed functional and molecular features conferred by the WD40 domain. Electron microscopic analysis of the purified LRRK2 C-terminal domain revealed doughnut-shaped particles, providing experimental evidence for its WD40 fold. We demonstrate that LRRK2 WD40 binds and sequesters synaptic vesicles via interaction with vesicle-associated proteins. In fact, a domain-based pulldown approach combined with mass spectrometric analysis identified LRRK2 as being part of a highly specific protein network involved in synaptic vesicle trafficking. In addition, we found that a C-terminal sequence variant associated with an increased risk of developing PD, G2385R, correlates with a reduced binding affinity of LRRK2 WD40 to synaptic vesicles. Our data demonstrate a critical role of the WD40 domain within LRRK2 function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The WD40 Domain Is Required for LRRK2 Neurotoxicity

BACKGROUND Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD). LRRK2 contains an "enzymatic core" composed of GTPase and kinase domains that is flanked by leucine-rich repeat (LRR) and WD40 protein-protein interaction domains. While kinase activity and GTP-binding have both been implicated in LRRK2 neurotoxicity, the potential role of o...

متن کامل

Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations.

Various investigators have identified the major domain organization of LRRK2 (leucine-rich repeat kinase 2), which includes a GTPase ROC (Ras of complex proteins) domain followed by a COR (C-terminal of ROC) domain and a protein kinase domain. In addition, there are four domains composed of structural repeat motifs likely to be involved in regulation and localization of this complex protein. In...

متن کامل

LRRK2 kinase activity modulates presynaptic vesicle release

Mutations in Leucine-rich repeat kinase 2 (LRRK2) are the single most common cause of inherited Parkinson ́s disease (PD). Little is known about its involvement in the pathogenesis of PD mainly due to the lack of knowledge about the physiological role of LRRK2. Our previous results suggest that LRRK2 acts as a scaffold within the presynaptic bouton and that it is involved in neurotransmitter rel...

متن کامل

Apoptotic mechanisms in mutant LRRK2-mediated cell death.

Mutations in the gene coding for leucine-rich repeat kinase 2 (LRRK2) cause autosomal-dominant Parkinson's disease. The pathological mutations have been associated with an increase of LRRK2 kinase activity, although its physiological substrates have not been identified yet. The data we report here demonstrate that disease-associated mutant LRRK2 cell toxicity is due to mitochondria-dependent ap...

متن کامل

DYRK1A binds to an evolutionarily conserved WD40-repeat protein WDR68 and induces its nuclear translocation.

DYRK1A is encoded in the Down's syndrome critical region on human chromosome 21, and plays an important role in the functional and developmental regulation of many types of cells, including neuronal cells. Here we have identified WDR68, an evolutionarily conserved protein with WD40-repeat domains, as a cellular binding partner of DYRK1A. WDR68 was originally identified in petunia as AN11 that c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 34 12  شماره 

صفحات  -

تاریخ انتشار 2014